首页> 外文OA文献 >Blind Deconvolution Meets Blind Demixing: Algorithms and Performance Bounds
【2h】

Blind Deconvolution Meets Blind Demixing: Algorithms and Performance Bounds

机译:Blind Deconvolution遇到盲解密:算法和性能   边界

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Suppose that we have $r$ sensors and each one intends to send a function$\boldsymbol{g}_i$ (e.g.\ a signal or an image) to a receiver common to all $r$sensors. During transmission, each $\boldsymbol{g}_i$ gets convolved with afunction $\boldsymbol{f}_i$. The receiver records the function$\boldsymbol{y}$, given by the sum of all these convolved signals. When andunder which conditions is it possible to recover the individual signals$\boldsymbol{g}_i$ and the blurring functions $\boldsymbol{f}_i$ from just onereceived signal $\boldsymbol{y}$? This challenging problem, which intertwinesblind deconvolution with blind demixing, appears in a variety of applications,such as audio processing, image processing, neuroscience, spectroscopy, andastronomy. It is also expected to play a central role in connection with thefuture Internet-of-Things. We will prove that under reasonable and practicalassumptions, it is possible to solve this otherwise highly ill-posed problemand recover the $r$ transmitted functions $\boldsymbol{g}_i$ and the impulseresponses $\boldsymbol{f}_i$ in a robust, reliable, and efficient manner fromjust one single received function $\boldsymbol{y}$ by solving a semidefiniteprogram. We derive explicit bounds on the number of measurements needed forsuccessful recovery and prove that our method is robust in the presence ofnoise. Our theory is actually sub-optimal, since numerical experimentsdemonstrate that, quite remarkably, recovery is still possible if the number ofmeasurements is close to the number of degrees of freedom.
机译:假设我们有$ r $个传感器,并且每个传感器都打算向所有$ r $个传感器共有的接收器发送一个函数\\ boldsymbol {g} _i $(例如,一个信号或一个图像)。在传输过程中,每个$ \ boldsymbol {g} _i $都会与函数$ \ boldsymbol {f} _i $卷积。接收器记录函数$ \ boldsymbol {y} $,由所有这些卷积信号的总和给出。在什么条件下以及何时在什么条件下可以仅从一个接收信号$ \ boldsymbol {y} $恢复单个信号$ \ boldsymbol {g} _i $和模糊函数$ \ boldsymbol {f} _i $?这个具有挑战性的问题将盲解卷积与盲解混在一起,出现在各种应用中,例如音频处理,图像处理,神经科学,光谱学和天文学。在未来的物联网中,它也有望发挥核心作用。我们将证明,在合理和实际的假设下,有可能解决这个原本非常不合理的问题,并能以健壮的方式恢复$ r $传递函数$ \ boldsymbol {g} _i $和脉冲响应$ \ boldsymbol {f} _i $通过求解半定程序,仅从一个接收函数$ \ boldsymbol {y} $中获得一种可靠,高效的方式。我们得出成功恢复所需的测量次数的明确界限,并证明我们的方法在存在噪声的情况下是鲁棒的。我们的理论实际上是次优的,因为数值实验表明,非常明显的是,如果测量的数量接近自由度的数量,则恢复仍然是可能的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号